

Operational Amplifiers John R. Leeman 8/2/21

Image: ThoughtCo

Op-Amps have just a few basic terminals, some with other features

Image: Circuit Digest

A few rules let us understand ANY Op-Amp circuit

- 1) No current flow into/out of the input terminals (high impedance)
- Op Amp will do whatever is necessary to keep the inputs at the same voltage (when feedback is used)
- 3) The output can source any current (low impedance)
- 4) Open loop gain is large

The most straightforward circuit is a comparator

Two comparators can make a window comparator

One of the most useful circuits is a voltage follower or buffer

Inverting amplifiers have a simple gain formula, but some caveats

Non-inverting amplifiers are modified voltage followers

Amplifiers don't have to operate from a bipolar supply

TEXAS INSTRUMENTS

Single-Supply Op Amp Design Techniques

Amplifiers don't have to operate from a bipolar supply

TEXAS INSTRUMENTS

Single-Supply Op Amp Design Techniques

Differentiators output the rate of change of the input

Integrators integrate the input over a time window

Differential amplifiers work with "double ended" signals, but aren't commonly implemented

Summing amplifiers can be handy as well

FFMAN

There are a lot of traps out there that can surprise even experienced electrical engineers

- 1) Input Bias Current
- 2) Input Offset Voltage
- 3) Gain Bandwidth Product
- 4) Others!

Input bias current is current flowing into/out of the inputs

6.5 Electrical Characteristics, LM741⁽¹⁾

PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Input offect veltage	P < 10 k0	T _A = 25°C		1	5	mV	
input onset voltage	$R_{\rm S} \ge 10 \ {\rm k}\Omega$	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV	
Input offset voltage adjustment range	$T_{A} = 25^{\circ}C, V_{S} = \pm 20 V_{S}$	1		±15		mV	
Input offect ourrent	T _A = 25°C			20	200	-	
input onset current	$T_{AMIN} \le T_A \le T_{AMAX}$		85	500	nA		
Input bios current	$T_A = 25^{\circ}C$			80	500	nA	
	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μA	

Input bias current also depends on everything else

Figure 13. Input Bias Current vs. Common-Mode Voltage

07670-013

Input Bias Current Problem #1 - Source Impedance

Input Bias Current Problem #2 - Gain Network

Some solutions

Input offset voltage is another hidden gotcha

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos					
B Grade (ADA4062-2, 8-Lead SOIC Only)				0.5	1.5	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			3	mV
A Grade				0.75	2.5	mV
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			5	mV
Offset Voltage Drift	$\Delta V_{os}/\Delta T$	$-40^{\circ}C \le T_A \le +125^{\circ}C$		5		μV/°C

Image: Toshiba Semiconductor

Vios can be compensated for with null terminals on some amplifiers

Image: Circuit Bread

A quick aside to talk about decibels (dBs) as the engineer thinks

$$\mathrm{dB} = 10 \mathrm{log}_{10} \frac{P_1}{P_2}$$

$$\mathrm{dB} = 20 \mathrm{log}_{10} \frac{V_1}{V_2}$$

Why? It actually makes the math easier to do!

Image: Biography.com

On a scope we are limited in range by the linear scale

The frequency domain is not any better

But with log scaling we can see details over a much larger range

 Let's consider a chain of amplifiers and we want to know the total amount of gain applied to an input signal

In Gain: 2 * 10 * 31.6 = 632

In dB: 6dB + 20dB + 30dB = 56 dB

Learn the dB "pocket numbers" to make your life easier

There are many industry "standard" dB ratings

dBm	1 milliwatt
dBu	1 microwatt
dBV	1 Volt
dbmV	1 millivolt
dbmA	1 milliamp

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.) 500N: 14?! RIDICULOUS! WE NEED TO DEVELOP ONE UNIVERSAL STANDARD SITUATION: SITUATION: THAT COVERS EVERYONE'S THERE ARE THERE ARE USE CASES. YEAH! 14 COMPETING 15 COMPETING STANDARDS. STANDARDS.

Gain Bandwidth Product (GBWP) is one of the most important considerations

					10	100	1k		10k		100k		1M		10	A	100M
Bandwidth =	= -	GBW Gain	<u>P</u>	GAIN (dB)	30 A 20 A 10 A -10 A -20 A	v = +10										ll ll	
Channel Separation (ADA4062-4 Only	7)	CS	f = 1 kHz		40	v = +100			₩.	Ш							
Channel Separation (ADA4062-2 Only	r)	CS	f = 1 kHz												Vs	γ = ±	5V
Phase Margin		Фм	$R_L = 10 \text{ k}\Omega, A_V = 1$		50		•										
Gain Bandwidth Product GBP $R_L = 10 k\Omega, A_V = 1$						1.4 MHz											
Settling Time t_s To 0.1%, $V_{IN} = 10$ V ste			step, C	L = 10	0 pF, 3.5						μs						
Slew Rate SR $R_L = 10 \text{ k}\Omega, C_L = 100$) pF, A	$F, A_V = 1$			3.3	3.3				V/µs					
DYNAMIC PERFORMANCE		111															

FREQUENCY (Hz)

Let's consider the non-inverting amplifier case

Bandwidth = 10kHz

GBWP = 1MHz

Image: Electronics Notes

Cascading amplifiers can greatly improve the amplifier bandwidth

$$Bandwidth_{total} = Bandwidth\sqrt{2^{\frac{1}{N}} - 1}$$

GBWP = 1MHz

Image: Electronics Notes

There are decreasing returns with increasing stages

Stages	Stage Gain	BW [kHz]
1	100	10
2	10	64.36
3	4.64	109.83
4	3.16	137.55
5	2.51	153.52
6	2.15	162.43
7	1.93	167.10
8	1.78	169.18
9	1.67	169.62
10	1.58	169.04

So just how bad is the noise amplification from op amp input noise?

So just how bad is the noise amplification from op amp input noise?

Don't forget about ensuring a path for input bias currents

Figure 8. High-Stability Thermocouple Amplifier

Instrumentation amplifiers are precision differential amplifiers

Image: Texas Instruments

IA's are perfect for bridge circuits/transducers

Image: Texas Instruments